Determinant of Matrices 3x3

--

3×3 Matrix Determinant - Cofactor Expansion Method

1️⃣ Learn the cofactor expansion method for 3×3 determinants
2️⃣ Understand the alternating sign pattern (+, -, +)
3️⃣ Master creating 2×2 submatrices by covering rows and columns
4️⃣ Practice calculating multiple 2×2 determinants systematically
5️⃣ Combine all results to get the final 3×3 determinant

🎯 The 3×3 Determinant Method

To calculate a 3×3 determinant, we expand along the first row. We take each element from the first row, create a 2×2 submatrix, and use the alternating sign pattern.

3×3 Determinant Formula

\det\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = a_{11}\begin{vmatrix} \cdot & \cdot \\ \cdot & \cdot \end{vmatrix} - a_{12}\begin{vmatrix} \cdot & \cdot \\ \cdot & \cdot \end{vmatrix} + a_{13}\begin{vmatrix} \cdot & \cdot \\ \cdot & \cdot \end{vmatrix}
Expand along first row with alternating signs: +, -, +

📋 Step 1: Set Up the Expansion Framework

First, we write down each element from the first row, create empty 2×2 determinants, and set up the alternating sign pattern. The negative sign is very important!

Framework Setup Process

Step 1: Take first element (a₁₁)

a_{11} \times \begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix}

Write the first element and create an empty 2×2 determinant (positive)

Step 2: Take second element (a₁₂) with negative sign

- a_{12} \times \begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix}

Add negative sign, then second element with empty 2×2 determinant

Step 3: Take third element (a₁₃) with positive sign

+ a_{13} \times \begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix}

Add positive sign, then third element with empty 2×2 determinant

Framework:
a_{11}\begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix} - a_{12}\begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix} + a_{13}\begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix}

🔍 Step 2: Fill the 2×2 Submatrices

For each 2×2 determinant, we cover the first row and the corresponding column, then write the remaining 4 elements in the 2×2 matrix.

Submatrix Creation Process

First Submatrix: Cover Row 1 and Column 1

\begin{bmatrix} \cancel{a_{11}} & \cancel{a_{12}} & \cancel{a_{13}} \\ \cancel{a_{21}} & a_{22} & a_{23} \\ \cancel{a_{31}} & a_{32} & a_{33} \end{bmatrix} \rightarrow \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}

Cover first row and first column, take remaining elements

Second Submatrix: Cover Row 1 and Column 2

\begin{bmatrix} \cancel{a_{11}} & \cancel{a_{12}} & \cancel{a_{13}} \\ a_{21} & \cancel{a_{22}} & a_{23} \\ a_{31} & \cancel{a_{32}} & a_{33} \end{bmatrix} \rightarrow \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}

Cover first row and second column, take remaining elements

Third Submatrix: Cover Row 1 and Column 3

\begin{bmatrix} \cancel{a_{11}} & \cancel{a_{12}} & \cancel{a_{13}} \\ a_{21} & a_{22} & \cancel{a_{23}} \\ a_{31} & a_{32} & \cancel{a_{33}} \end{bmatrix} \rightarrow \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}

Cover first row and third column, take remaining elements

🧮 Step 3: Calculate Each 2×2 Determinant

Now we calculate each 2×2 determinant using the formula we learned: ad - bc. Then multiply by the corresponding first row element and apply the correct sign.

Complete 3×3 Determinant Formula

\det = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})
Each term = (first row element) × (2×2 determinant)

📝 Worked Example: Complete Calculation

Let's calculate the determinant of \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} step by step.

Example: \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}

Step 1: Set up the expansion

1 \cdot \begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix} - 2 \cdot \begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix} + 3 \cdot \begin{vmatrix} \_ & \_ \\ \_ & \_ \end{vmatrix}

Step 2: First term (cover row 1, column 1)

Submatrix: \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = (5×9) - (6×8) = 45 - 48 = -3
First term: 1 × (-3) = -3

Step 3: Second term (cover row 1, column 2)

Submatrix: \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = (4×9) - (6×7) = 36 - 42 = -6
Second term: -2 × (-6) = 12

Step 4: Third term (cover row 1, column 3)

Submatrix: \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = (4×8) - (5×7) = 32 - 35 = -3
Third term: 3 × (-3) = -9

Step 5: Combine all terms

Final calculation: (-3) + (12) + (-9) = -3 + 12 - 9 = 0
Final Answer: \det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = 0

⚠️ Important Sign Pattern

Alternating Sign Pattern Rules

🔹 The Sign Pattern: +, -, +

First element: Positive (+)

Second element: Negative (-) ← Very important!

Third element: Positive (+)

🔹 Why the Negative Sign Matters

The negative sign in front of a₁₂ is part of the mathematical formula

Without it, the determinant calculation will be incorrect

Always remember: +a₁₁ - a₁₂ + a₁₃

🔹 General 3×3 Pattern

\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}

This checkerboard pattern applies to cofactor expansion

🎯 Practice Example with Different Numbers

Quick Example: \begin{bmatrix} 2 & 1 & 3 \\ 0 & 4 & 1 \\ 5 & 2 & 1 \end{bmatrix}

First Term (+)

2 \times \begin{vmatrix} 4 & 1 \\ 2 & 1 \end{vmatrix}
= 2 × (4×1 - 1×2)
= 2 × 2 = 4

Second Term (-)

-1 \times \begin{vmatrix} 0 & 1 \\ 5 & 1 \end{vmatrix}
= -1 × (0×1 - 1×5)
= -1 × (-5) = 5

Third Term (+)

3 \times \begin{vmatrix} 0 & 4 \\ 5 & 2 \end{vmatrix}
= 3 × (0×2 - 4×5)
= 3 × (-20) = -60
Final Result: 4 + 5 + (-60) = -51

🧠 3×3 Determinant Process Summary

Step-by-Step Method

  1. Set Up Framework - Write first row elements with +, -, + signs
  2. Create Submatrices - Cover corresponding row and column for each
  3. Calculate 2×2 Determinants - Use ad - bc formula
  4. Multiply by Coefficients - First row elements × determinant results
  5. Apply Signs Carefully - Don't forget the negative sign!
  6. Sum All Terms - Add/subtract to get final result

🎯 Key 3×3 Determinant Rules

  • Cofactor Expansion: Expand along the first row (most common method)
  • Sign Pattern: Always use +, -, + for first row expansion
  • Submatrix Creation: Cover row 1 and column i for element a₁ᵢ
  • 2×2 Calculation: Each submatrix uses formula ad - bc
  • Final Combination: Sum all terms with their correct signs
  • Critical Signs: The negative sign in the middle term is essential